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Abstract

Background: High-throughput gene profiling studies have been extensively conducted, searching for markers

associated with cancer development and progression. In this study, we analyze cancer prognosis studies where

the response variables are censored survival. With gene expression data, we adopt the weighted co-expression

network to describe the interplay among genes. In network-based analysis, nodes represent genes. There are

subsets of nodes, called modules, that are tightly connected to each other. Genes within the same modules tend

to have coregulated biological functions. For cancer prognosis data with gene expression measurements, our goal

is to identify cancer markers, while properly accounting for the network module structure.

Results: A two-step sparse boosting-based approach, called NSBoost (Network-based Sparse Boosting), is

proposed for marker selection. In the first step for each module separately, we adopt a sparse boosting approach

for within-module marker selection and construct module-level “super markers”. In the second step, we use the

super markers to represent effects of all genes within the same modules and conduct module-level selection

using a sparse boosting approach. Simulation study shows that NSBoost can more accurately identify markers

than alternative approaches. In the analysis of breast cancer and lymphoma prognosis studies, NSBoost

outperforms alternatives including boosting and penalization approaches by identifying a smaller number of

genes/modules and having better prediction performance.

Conclusions: Network provides an effective way of describing the interplay among genes. Accommodating the

network structure using NSBoost may improve cancer marker selection.

Background

High-throughput gene expression profiling studies have been extensively conducted, searching for markers

associated with the development and progression of cancer. In this study, we analyze cancer prognosis

studies, where the outcome variables are progression-free, overall, or other types of survival. In many

existing analyses of cancer gene expression data, it has been assumed that genes have interchangeable

effects [1]. Biomedical studies have shown that there exists inherent coordination among genes and,

essentially, all biological functions of living cells are carried out through the coordinated effects of multiple

genes. There are multiple ways of describing the interplay among genes. The most popular ways are
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perhaps gene pathway and network [2]. Compared with pathway analysis, network analysis sometimes may

be more informative as it describes not only whether two genes are “connected” but also the strength of

connection. In addition, network analysis may analyze all genes, whereas pathway analysis often focuses on

annotated genes only. On the negative side, unlike with pathways, research that targets at linking specific

network structures to biological functions remains scarse. In the literature, there is no definitive evidence

on the relative performance of pathway and network analyses. In this article, we focus on network-based

analysis and refer to other studies for discussions and comparisons of pathway- and network-based analyses.

In network analysis, nodes represent genes. Nodes are connected if the corresponding genes have

coregulated biological functions or correlated expressions. Multiple approaches have been proposed to

compute the connectedness measure between two genes. See for example [3, 4] and references therein.

Published studies have suggested that the connectedness measure may have important implications. For

example, hub genes, which are genes “well connected” with a large number of genes, tend to have more

important biological functions. There are subsets of nodes, called modules, that are tightly connected to

each other. Genes within the same modules tend to have coordinated biological functions, whereas genes in

different modules tend to have different, unrelated biological functions.

Statistical methods that can accommodate the high dimensionality of high-throughput cancer data can be

roughly classified as dimension reduction or variable selection methods. Both families of methods have

been employed in network-based analysis. Dimension reduction methods, for example principal component

analysis-based methods, search for linear combinations of all genes or all genes within the same modules as

cancer markers. See for example [5] and references therein. Such methods may have satisfactory prediction

performance but often suffer a lack of interpretability. In addition, they contradict the fact that not all

genes are involved in cancer pathogenesis. Variable selection methods search for a subset of profiled genes

as markers and may be more interpretable [6]. In this article, we focus on the development of a

network-based variable selection method and refer to other publications for comprehensive discussions and

comparisons of dimension reduction and variable selection methods.

For cancer prognosis studies with gene expression measurements, we adopt the weighted co-expression

network [7] to describe the interplay among genes. We develop NSBoost (Network-based Sparse Boosting),

a two-step sparse boosting based method, for cancer marker selection. The proposed method may advance

from existing methods by explicitly accounting for the module structure of network in marker selection and
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hence can be more informative. Another advantage of the proposed method is that it is relatively

“independent” of the network construction procedure and thus is applicable to multiple types of networks.

Methods
Construction of weighted coexpression network

There are multiple ways of building gene networks. Examples include Boolean network, Bayesian network,

use of continuous model, and others. To the best of our knowledge, in the literature there is a lack of

definitive evidence on the relative performance of different network construction methods. In this study, we

adopt WGCNA [7], which is built on the understanding that the coordinated co-expressions of genes

encode interacting proteins with closely related biological functions and cellular processes. Detailed

investigation of WGCNA has been conducted by Dr. Steve Horvath and his group at UCLA. Their studies

suggest that modules in the weighted co-expression network have important biological implications. Genes

with a higher connectivity are more likely to be involved in important molecular processes. In addition,

incorporating connectivity in the detection of differentially expressed genes can lead to significantly

improved reproducibility.

Construction of the weighted co-expression network is computationally simple, and a user-friendly R

package is available for such a purpose [8]. In addition, WGCNA is completely inferred from gene

expression measurements of a single study and hence does not demand a large amount of biological

experiments. On the negative side, it is built on the estimated covariance matrix. In cancer gene

expression studies, with the sample size significantly smaller than the number of genes, the uniform

consistency of the covariance matrix estimation is debatable. Thus, unlike some other ways of describing

gene interplay (for example, pathways), the weighted co-expression network structure may vary

considerably in studies with comparable setup. For integrity of this study, we describe the WGCNA

algorithm below and refer to [7] for more details.

1. Assume that there are d genes. For genes k and j (= 1 . . . d), compute cor(k, j), the Pearson

correlation coefficient of their expressions. Compute the similarity measure S(k, j) = |cor(k, j)|;

2. Compute the adjacency function ak,j = Sb(k, j), where the adjacency parameter b is chosen using the

scale-free topology criterion. In our data analysis, we find that b = 6, which has been suggested in

quite a few published studies, lead to satisfactory results;

3. For gene k, compute its connectivity Ck =
∑
u ak,u;
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4. For gene k (= 1 . . . d), compute the topological overlap based dissimilarity measure dk,j = 1− ωk,j

where ωk,j = (lk,j + ak,j)/(min(Ck, Cj) + 1− ak,j) and lk,j =
∑
u ak,uaj,u. Define the dissimilarity

matrix D, whose (k, j)th element is dk,j ;

5. Identify network modules using matrix D and the hierarchical clustering approach. Apply the

dynamic tree cut approach [9] to cut the clustering tree (dendrogram), and identify the resulting

branches as modules.

Denote M as the number of modules constructed using the above algorithm and S(m) as the size of

module m(= 1, . . . ,M).

Statistical modeling

Let Ti be the logarithm of survival time and Xi be the d-dimensional gene expressions for the ith subject

in a random sample of size n. The AFT (accelerated failure time) model assumes

Ti = α+X ′iβ + εi, i = 1, . . . , n, (1)

where α is the intercept, β ∈ Rd is the unknown regression coefficient, and εi is the random error with an

unknown distribution. Under right censoring, one observation consists of (Yi, δi, Xi), where

Yi = min{Ti, Ci}, Ci is the logarithm of censoring time, and δi = 1{Ti ≤ Ci} is the censoring indicator.

The AFT model provides a flexible alternative to the Cox proportional hazards model [10]. It assumes a

linear function for the log-transformed survival time and thus may provide a more straightforward

description of the gene effects on survival than alternatives (for example Cox model, which describes the

survival hazard). There are multiple approaches for estimating the AFT model with an unspecified error

distribution. Examples include the Buckley-James estimator which adjusts censored observations using the

Kaplan-Meier estimator and the rank based estimator which is motivated by the score function of the

partial likelihood function. With high-dimensional gene expression data, those approaches suffer a

prohibitively high computational cost.

A computationally more feasible approach is the weighted least squares approach [11]. Denote F̂n as the

Kaplan-Meier estimator of F , the distribution function of T . It can be computed as

F̂n(y) =
∑n
i=1 wi1{Y(i) ≤ y}. Here wis are the jumps in the Kaplan-Meier estimator computed as w1 =

δ(1)
n

and wi =
δ(i)

n−i+1

∏i−1
j=1

(
n−j
n−j+1

)δ(j)
, i = 2, . . . , n. wis have also been referred to as the Kaplan-Meier
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weights in [11]. Here Y(1) ≤ · · · ≤ Y(n) are the order statistics of Yi’s, δ(1), . . . , δ(n) are the associated

censoring indicators, and X(1), . . . , X(n) are the associated gene expressions. The weighted least squares

loss function is

1

2

n∑
i=1

wi(Y(i) − α−X ′(i)β)2.

We center X(i) and Y(i) using their corresponding wi-weighted means, respectively. Let

X̄w =
∑n
i=1 wiX(i)/

∑n
i=1 wi and Ȳw =

∑n
i=1 wi Y(i)/

∑n
i=1 wi. Denote X∗(i) = w

1/2
i (X(i) − X̄w) and

Y ∗(i) = w
1/2
i (Y(i) − Ȳw). We can then rewrite the weighted least squares loss function as

l(β) =
1

2

n∑
i=1

(Y ∗(i) −X
∗′
(i)β)2. (2)

The simple form of this loss function makes it computationally affordable and thus suitable for

high-dimensional gene expression data.

Network-based gene selection

The proposed approach belongs to the family of boosting approaches. Boosting assembles a strong learner

using a set of weak learners [12]. It is appropriate for cancer genomic data analysis as individual genes

usually have weak effects, but combined together, they may have strong effects.

Algorithm

We first rearrange gene expressions so that β = (β1′, . . . , βM ′)′, where βm is the length S(m) vector of

regression coefficients for all genes within module m. Denote βmj as the jth component of βm and X∗m(i) as

the components of X∗(i) that correspond to βm.

Step I: Within-module boosting

For m = 1, . . . ,M , consider the objective function 1
2

∑n
i=1(Y ∗(i) −X

∗m′
(i) β

m)2, which is l(β) evaluated

only on genes within the mth module. This is equivalent to the objective function obtained from

fitting an AFT model using only the mth module.

(a) Initialization. Set k = 0 and βm[k] = 0 (component-wise).

(b) Fit and update. k = k + 1.

Compute ŝ = argmin1≤s≤S(m)argminγ
1
2

∑n
i=1(Y ∗(i) −X

∗m′
(i) β

m[k−1] − γX∗m(i),s)
2 +

log(n)
∑

1≤s≤S(m) I(β
m[k−1]
s + γ 6= 0);
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Compute γ̂ = argminγ
∑n
i=1

1
2 (Y ∗(i) −X

∗m′
(i) β

m[k−1] − γX∗m(i),ŝ)
2;

Update β
m[k]
s = β

m[k−1]
s for s 6= ŝ and β

m[k]
ŝ = β

m[k−1]
ŝ + νγ̂, where ν is the step size. As

suggested in [13] and references therein, the choice of ν is not critical as long as it is small. In

our numerical study, we set ν = 0.1;

(c) Iteration. Repeat Step (b) for K iterations;

(d) Stopping. At iteration k, compute the objective function

F (k) =
∑n
i=1

1
2 (Y ∗(i) −X

∗m′
(i) β

m[k])2 + log(n)
∑

1≤s≤S(m) I(β
m[k]
s 6= 0). Estimate the stopping

iteration by k̃ = argmin1≤k≤KF (k). For subject i, define its “super marker” for module m as

Zm(i) = X∗m′β
m[k̃]
(i) ;

Step II: Module-wise boosting

Consider the objective function 1
2

∑n
i=1(Y ∗(i) − Z

′
(i)τ)2, where Z(i) = (Z1

(i), . . . , Z
M
(i))
′ and

τ = (τ1, . . . , τM ) is the unknown regression coefficient. That is, in the least squares objective function

(2), we use the super markers, which can represent the effects of all genes within the same modules,

to replace the original gene expressions.

(a) Initialization. Set k = 0 and τ [k] = 0 (component-wise).

(b) Fit and update. k = k + 1.

Compute

ŝ = argmin1≤s≤Margminγ
∑n
i=1

1
2 (Y ∗(i)−Z

′
(i)τ

[k−1]−γZ(i),s)
2+log(n)

∑
1≤s≤M I(τ

[k−1]
s +γ 6= 0);

Compute γ̂ = argminγ
∑n
i=1

1
2 (Y ∗(i) − Z

′
(i)τ

[k−1] − γZ(i),ŝ)
2;

Update τ
[k]
s = τ

[k−1]
s for s 6= ŝ and τ

[k]
ŝ = τ

[k−1]
ŝ + νγ̂, where ν = 0.1 is the step size;

(c) Iteration. Repeat Step (b) for K iterations;

(d) Stopping. At iteration k, compute the objective function

F (k) =
∑n
i=1

1
2 (Y ∗(i) −Z

′
(i)τ

[k])2 + log(n)
∑

1≤s≤M I(τ
[k]
s 6= 0). Estimate the stopping iteration by

k̂ = argmin1≤k≤KF (k).

∑M
m=1 τ

k̂
mZ

m
(i) =

∑M
m=1 τ

k̂
m{X∗m′(i) β

m[k̃]} is the resulted strong learner for Y ∗(i). Genes and modules with

nonzero regression coefficients in the strong learner are identified as associated with cancer.
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Rationale

With NSBoost, marker selection is achieved in two steps. This basic strategy is similar to that in [14]. In

the first step, each module is analyzed separately. Genes within different modules tend to have different

biological functions. Thus, it is sensible to analyze each module separately in the sense that different

biological functionalities should be considered separately. On the other hand, genes within the same

modules tend to have correlated but never identical biological functions. Thus, with the within-module

selection, we search for genes that are associated with cancer within a group of functionally related genes.

This step of selection can not only remove noises but also lead to the construction of super marker, which

is a linear combination of selected genes and can represent effects of all genes within the same module. The

introduction of super marker shares a similar spirit with [5]. In the second step, we consider the joint

effects of all super markers and hence all modules. When a large number of genes are profiled, it is not

reasonable to assume that all modules are cancer-associated. It is necessary to conduct the second step of

selection and discriminate cancer-associated modules from noises. Thus, with the proposed approach, we

may identify which modules are cancer-associated as well as which genes are cancer-associated within

selected modules. Considering the important biological implications of modules, this approach may be

more informative than alternatives that ignore the module structure. Another advantage of the proposed

approach is its computational affordability. In the within-module boosting, the number of genes per

module can be much smaller than the total number of genes. In addition, this step can be carried out in a

parallel manner. Thus, the first step of boosting has computational cost much smaller than ordinary

boosting with all genes. With WGCNA, the number of modules and hence super markers is usually not

large – numerical studies in [5, 6] suggesting less than 20. Thus, the computational cost of the second step

of boosting is almost negligible.

In both steps, marker selection is achieved using a sparse boosting approach. In high-dimensional data

analysis, boosting may be preferred because of its low computational cost, flexibility, and satisfactory

empirical performance. With ordinary boosting, when the stopping rule is properly chosen, the resulted

strong learners may enjoy a certain degree of sparsity, and so marker selection can be achieved. This can

be seen from [15] and followup studies as well as our numerical study. However, recent studies [13,16]

suggest that with high dimensional data, ordinary boosting may not be “sparse enough”. That is, it may

identify a considerable number of false positives. The sparse boosting approach adopted here has been

motivated by [13]. In particular, the objective function used for boosting and stopping has two terms. The
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first term measures goodness-of-fit, and the second term measures model complexity. We adopt the BIC

criterion for model complexity measure. As a comparison, ordinary boosting only considers goodness-of-fit

in boosting, which may introduce noisy variables that happen to be able to slightly improve the

goodness-of-fit. The addition of model complexity measure in sparse boosting may lead to sparser models

and hence reduce the number of false positives. On the negative side, sparse boosting can be

computationally more expensive than ordinary boosting as the model complexity measure and hence the

whole objective function are not differentiable and cannot be minimized using gradient-based approaches.

The sparse boosting approach adopted in this study differs from those in [13,16]. Particularly, previous

studies focus on continuous and categorical data, whereas we analyze censored survival data, which can be

more complicated. The adopted BIC criterion has been more commonly adopted as a model complexity

measure than the MDL (minimum description length). In addition, the two-step boosting procedure can

effectively accommodate the module structure.

Parameter path

Parameter path, which is the graphical presentation of the estimates as a function of number of iterations,

may provide further insights into NSBoost. Consider the simulation setting corresponding to row 1 of

Table 1. For a better view, we simplify the simulation setting and consider 4 modules with 4 genes per

module. The first 2 modules are cancer-associated, within which there are 2 cancer-associated genes. Thus,

among the 16 simulated genes, 4 are associated with cancer. For comparison, we also study NBoost (details

described in the Results section). For a randomly generated dataset, the parameter paths are shown in

Figures 1 (NSBoost) and 2 (NBoost), respectively.

Within each module, the parameter paths of NSBoost are similar to those of other regularized variable

selection approaches [12]. By considering model complexity in boosting, the NSBoost parameter paths are

“smoother” than their NBoost counterparts. NBoost does not consider model complexity in boosting and

thus may suffer a risk of false positives. For example in the top right panel, NBoost has one false positive

while NSBoost does not. Our limited numerical study suggests that, in the within-module boosting step,

NSBoost may identify “signals” even with purely noisy modules. Thus, the module-level boosting is needed,

which can effectively remove noisy modules as a whole (see the bottom panel). With a combination of the

two boosting steps, NSBoost can be sparser than NBoost at both within-module level and module level.
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Results
Simulation

We conduct simulation to better understand properties of the proposed approach. In each simulated

dataset, there are 100 subjects. We simulate 50 gene clusters with 20 genes in each cluster. Gene

expressions have marginally standard normal distributions. Genes within different clusters have

independent expressions. For genes within the same clusters, their expressions have the following

correlation structures: (1) auto-regressive correlation, where expressions of genes j and k have correlation

coefficient ρ|j−k|. ρ = 0.3 or 0.7, corresponding to weak and strong correlations; (2) Banded correlation,

where expressions of genes j and k have correlation coefficient max(0, 1− |j − k| × ρ). ρ = 0.2 or 0.33; (3)

Compound symmetry, where expressions of genes j and k have correlation coefficient ρ when j 6= k. ρ = 0.3

or 0.7. Within each of the first 4 clusters, the first 5 genes are associated with survival. There are thus a

total of 20 cancer-associated genes, and the rest are noises. For cancer-associated genes, we generate their

regression coefficients from Unif [0.5, 1.5]. Thus, some genes have large effects, and others have moderate

to small effects. We generate the logarithm of survival time from the AFT model. The logarithm of

censoring time is independently generated from a normal distribution. We adjust the censoring distribution

parameters so that the censoring rate is about 40%. The simulation settings mimic the real data setting

considered in this study, where the interplay among genes can be described using the network module

structure. Genes within the same modules tend to have correlated expressions, whereas genes within

different modules tend to have weakly correlated or uncorrelated expressions. Among a large number

modules, only a few are associated with survival. Within those important modules, some genes are

cancer-associated and others are noises.

To better gauge performance of the proposed approach, we also consider the following alternatives: (1)

Enet (elastic net) [17], which is a penalization approach and has been extensively used in the analysis of

gene expression data; (2) Boost, which is the ordinary boosting approach and takes the goodness-of-fit as

the only criterion for choosing weaker learners. A BIC-type criterion similar to that with NSBoost is

adopted for stopping; (3) SBoost, which is a sparse boosting approach and considers the goodness-of-fit

and model complexity measured using the BIC criterion in boosting and stopping. The above three

approaches ignore the network structure and treat all gene effects as interchangeable. In addition, we also

consider (4) NBoost, which is a network-based boosting approach and has a two-step algorithm similar to

that with the proposed approach. The difference is that in boosting, only the goodness-of-fit is considered
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when choosing weaker learners. We are aware that there are a large number of approaches that can be used

to analyze the simulated data. The above four approaches are chosen for comparison, as the Enet is one of

the most extensively used penalization approaches and particularly includes Lasso and ridge penalization

as special cases; and Boost, SBoost and NBoost have a boosting framework closest to that of NSBoost.

Summary statistics based on 200 replicates are presented in Table 1. Enet and Boost can identify all the

true positives. However, under some scenarios, they may identify a considerable number of false positives.

SBoost, which considers model complexity in boosting but ignores the network structure, is “overly sparse”

in our simulation by having a considerable number of false negatives. Without accounting for model

complexity in boosting, NBoost identifies a large number of false positives. Under all simulated scenarios,

NSBoost is capable of identifying the majority or all of the true positives while having a small number of

false positives. We have also experienced with a few other simulation settings and reached similar

conclusions.

Data analysis

We collect four cancer prognosis studies with gene expression measurements. Brief descriptions are

provided in Table 2 and below. We refer to the original publications for more details.

D1. Breast cancer is the second leading cause of cancer death among women in the United States. Despite

major progress in breast cancer treatment, the ability to predict metastasis of the tumor still remains

limited. Huang et al. [18] reported a study investigating metastatic states and relapses in breast cancer

patients. Affymetrix genechips were used for the profiling of 71 samples.

D2. Sorlie et al. [19] conducted a gene expression profiling study, investigating whether it was feasible to

classify breast carcinomas based on the gene expression patterns. cDNA Profiling of a total of 85 samples

was conducted, showing that breast cancer could be classified into a basal epithelial-like group, an

ERBB2-overexpressing group, and a normal breast-like group. Among the 85 samples, 58 had survival

information available and will be analyzed in this study.

D3. Mantle cell lymphoma (MCL) accounts for ∼ 8% of all NHLs (non-Hodgkin lymphoma). Rosenwald

et al. [20] reported a gene expression study of MCL survival. Among 101 untreated patients with no

history of previous lymphoma, 92 were classified as having MCL based on morphologic and
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immunophenotypic criteria. Survival times of 64 patients were available, and the rest were censored. The

median survival time was 2.8 years. Lymphochip DNA microarrays were used to quantify mRNA

expressions in the lymphoma samples. Gene expression data on 8,810 cDNA elements were available.

D4. Diffuse large B-cell lymphoma (DLBCL) is a cancer of the B-cell. It accounts for ∼ 40% of all NHL

cases. A DLBCL gene expression study was reported in [21]. This study retrospectively collected tumor

biopsy specimens and clinical data for 240 patients with untreated DLBCL. The median follow up was 2.8

years, with 138 observed deaths. Lymphochip cDNA microarray was used to measure the expressions of

7,399 genes.

Among the four studies, one used Affymetrix and three used cDNA for profiling. We process the datasets

as follows. We conduct normalization using the lowess approach for cDNA data and the robust multi-array

(RMA) approach for Affymetrix data. Missing measurements are imputed using the K-nearest neighbors

approach. Affymetrix gene expression measurements are log2 transformed. We select the 500 genes with

the largest variances for downstream analysis. Here the prescreening may serve multiple purposes. First in

cancer gene expression studies, usually genes with higher variations are of more interest. Second, it is

expected that the number of cancer prognosis-associated genes is far smaller than 500. Prescreening may

remove genes that are highly unlikely to be cancer-associated and significantly reduce computational cost.

More importantly, as discussed above, WGCNA involves estimating the covariance matrix. Prescreening

may significantly reduce the dimensionality of this matrix and improve estimation accuracy. With selected

genes, we normalize their expressions to have zero median and unit variance.

With datasets D1-D4, the WGCNA approach constructs 4, 5, 6 and 6 modules, respectively. For dataset

D4, we show in Figure 3 the details on module construction. Results for other datasets are available from

the authors. We apply the NSBoost as well as the four alternative approaches discussed in the above

section. Analysis results are presented in Table 3. More details on the identified genes are available from

the authors. Table 3 shows that NSBoost identifies a small number of genes as cancer prognosis markers.

By conducting the module-level sparse boosting and hence encouraging sparsity at the module level,

NSBoost identifies the smallest number of modules, which may lead to more focused hypotheses for

downstream analysis. Genes identified by NSBoost differ significantly from those identified using Enet,

Boost, and SBoost. For example for dataset D1, the numbers of overlapped genes are 4, 5 and 3,

respectively. The sets of genes identified by NBoost and NSBoost are more similar, which is as expected, as
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the two approaches both use boosting for marker selection and account for the module structure. For

example for dataset D1, the number of overlapped genes is 23. With our limited understanding of cancer

genomics, we are unable to draw conclusions on which sets of identified markers are “the most

meaningful”. As an indirect evaluation, we examine the prediction performance of different approaches,

which proceeds as follows: (1) Randomly split the data into a training set and a testing set with sizes 3:1;

(2) Analyze the training data and identify markers. We note that a natural byproduct of the proposed

approach is a prediction model; (3) Make prediction for subjects in the testing set. The predictive model

can lead to a predicted risk score X ′β for each subject. Dichotomize the risk scores at median and create

two risk groups. Compute the logrank statistic, which measures the survival difference between the two

groups; (4) To avoid an extreme partition, repeat Steps (1)-(3) 100 times, and compute the average logrank

statistic. Table 3 shows that with the four analyzed datasets, NSBoost has the largest logrank statistcis

and hence best performance in separating subjects into groups with different survival risks. The superior

prediction performance may provide an indirect support to the marker selection validity of NSBoost.

Discussion and Conclusions

In cancer genomic studies, an important goal is to identify markers associated with prognosis. There exists

inherent coordination among genes, and network provides an effective way of describing such coordination.

In this study, we adopt the weighted co-expression network and develop a two-step sparse boosting-based

approach to account for the network structure in cancer marker selection. The proposed approach is

intuitively reasonable. Simulation and data analysis show its satisfactory performance.

In the literature, multiple ways of describing the interplay among genes have been developed. To the best

of our knowledge, there is a lack of consensus on the most effective way of describing genes’ interplay or the

optimal network construction. Our analysis shows that with WGCNA, the proposed NSBoost may improve

cancer marker selection. As the focus is on the development of NSBoost, a more comprehensive

examination of its performance under different networks is beyond our scope. We adopt the AFT model to

describe gene effects on survival. Compared with alternatives such as the Cox model, this model may have

more lucid interpretation and significantly lower computational cost. Model diagnostics is not conducted as

there is a lack of existing diagnostics tools for high-dimensional survival data. The satisfactory prediction

performance may partly support the validity of this model. NSBoost can effectively account for the

“module-gene” two level hierarchical structure, which is not the full information contained in the network.
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WGCNA and other networks contain other information, for example the connectedness measure between

two genes within the same modules. It may be possible to extend the proposed approach and

accommodate the connectedness measure in marker selection. However as discussed above, with n << d,

uniform estimation consistency of

(
d
2

)
connectedness measures is questionable. In contrast, the module

structure can be much more reliable. Thus, we focus on the module structure in our research. The

simulation settings considered in this study are simpler than what’s encountered in practical data analysis.

We intentionally choose such settings as they may actually favor simple approaches such as Enet and

Boost. In data analysis, we conclude that NSBoost may be preferred as it identifies a smaller number of

modules and genes and has superior prediction performance. Analysis of independent validation studies

may be needed to fully confirm performance of NSBoost and identified markers.
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Tables
Table 1 - Simulation study: median number of genes (T) and true positives (TP) identified over 200
replicates. Correlation structure: auto-regressive (auto), banded, and compound symmetry (comp).

Enet Boost SBoost NBoost NSBoost
Structure ρ T TP T TP T TP T TP T TP

auto 0.3 30 20 38 20 30 18 103 16 23 20
0.7 23 20 33 20 23 16 91 13 23 20

banded 0.2 22 20 34 20 22 15 80 12 21 18
0.33 26 20 34 20 24 16 90 14 24 20

comp 0.3 33 20 49 20 27 15 102 14 27 20
0.7 36 20 47 20 18 12 76 10 20 17

Table 2 - Description of datasets. Gene/Sample: number of genes/subjects profiled.

Data Disease Platform Gene Sample
D1: Huang et al. (2003) Breast cancer Affymetrix 12,625 71
D2: Sorlie et al. (2001) Breast cancer cDNA 8,102 58
D3: Rosenwald et al. (2003) MCL cDNA 8,810 92
D4: Rosendwald et al. (2002) DLBCL cDNA 7,399 240

Table 3 - Data analysis results. Gene: number of genes identified; Overlap: number of overlapped
genes with NSBoost; Module: number of modules identified; logrank: prediction logrank statistic.

D1 D2 D3 D4
Enet gene 29 39 82 60

overlap 2 3 6 0
module 4 3 5 2
logrank 0.089 8.931 3.405 5.629

Boost gene 70 74 17 12
overlap 5 4 1 0
module 4 4 3 4
logrank 1.704 2.478 1.642 7.976

SBoost gene 31 26 22 12
overlap 3 1 1 0
module 3 2 4 2
logrank 0.063 0.128 5.961 6.662

NBoost gene 102 91 44 35
overlap 23 21 13 14
module 3 2 5 2
logrank 0.266 0.318 8.996 17.015

NSBoost gene 31 30 21 22
module 2 1 1 1
logrank 2.863 11.504 15.613 18.937
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Figures
Figure 1 — Parameter path of NSBoost: estimates as a function of number of iterations. The upper
four panels correspond to four modules in Step 1 of boosting. The lower panel corresponds to four
super markers in Step 2 of boosting. Different colors correspond to different modules.
Figure 2 — Parameter path of NBoost: estimates as a function of number of iterations. The upper
four panels correspond to four modules in Step 1 of boosting. The lower panel corresponds to four
super markers in Step 2 of boosting. Different colors correspond to different modules.
Figure 3 — Analysis of data D4: network modules constructed using WGCNA.
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